skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choi, Stacey_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adaptive optics-optical coherence tomography (AO-OCT) allows for the three-dimensional visualization of retinal ganglion cells (RGCs) in the living human eye. Quantitative analyses of RGCs have significant potential for improving the diagnosis and monitoring of diseases such as glaucoma. Recent advances in machine learning (ML) have made possible the automatic identification and analysis of RGCs within the complex three-dimensional retinal volumes obtained with such imaging. However, the current state-of-the-art ML approach relies on fully supervised training, which demands large amounts of training labels. Each volume requires many hours of expert manual annotation. Here, two semi-supervised training schemes are introduced, (i) cross-consistency training and (ii) cross pseudo supervision that utilize unlabeled AO-OCT volumes together with a minimal set of labels, vastly reducing the labeling demands. Moreover, these methods outperformed their fully supervised counterpart and achieved accuracy comparable to that of human experts. 
    more » « less
  2. Adaptive optics imaging has enabled the enhanced in vivo retinal visualization of individual cone and rod photoreceptors. Effective analysis of such high-resolution, feature rich images requires automated, robust algorithms. This paper describes RC-UPerNet, a novel deep learning algorithm, for identifying both types of photoreceptors, and was evaluated on images from central and peripheral retina extending out to 30° from the fovea in the nasal and temporal directions. Precision, recall and Dice scores were 0.928, 0.917 and 0.922 respectively for cones, and 0.876, 0.867 and 0.870 for rods. Scores agree well with human graders and are better than previously reported AI-based approaches. 
    more » « less